Mitochondrial Threonyl-tRNA Synthetase TARS2 Is Required for Threonine-Sensitive mTORC1 Activation

نویسندگان

چکیده

•Mitochondrial protein TARS2 interacts with lysosomal amino-acid-sensing machinery•Threonine modulates localization and activity of mTORC1 through TARS2•TARS2 binds inactive RagC elevates GTP loading RagA in response to threonine•TARS2 is required for threonine-dependent regulation the signaling pathway Mechanistic target rapamycin complex 1 (mTORC1) controls cell growth proliferation by sensing fluctuations environmental cues such as nutrients, factors, energy levels. The Rag GTPases (Rags) serve a critical module that signals amino acid (AA) availability modulate activity. Recent studies have demonstrated how AAs regulate Rags. Here, we uncover an unconventional activates variations threonine (Thr) levels via mitochondrial threonyl-tRNA synthetase TARS2. Rags, particularly GTP-RagC, leading increased RagA. cells lacking resistant Thr repletion, showing necessary Thr-dependent activation. requirement TARS2, but not cytoplasmic TARS, this effect demonstrates additional layer complexity central regulator exquisitely responds (Hay Sonenberg, 2004Hay N. Sonenberg Upstream downstream mTOR.Genes Dev. 2004; 18: 1926-1945Crossref PubMed Scopus (3298) Google Scholar; Wullschleger et al., 2006Wullschleger S. Loewith R. Hall M.N. TOR metabolism.Cell. 2006; 124: 471-484Abstract Full Text PDF (4437) Wolfson Sabatini, 2017Wolfson R.L. Sabatini D.M. dawn age sensors pathway.Cell Metab. 2017; 26: 301-309Abstract (252) Scholar). orchestrates anabolic processes synthesis (Ben-Sahra Manning, 2017Ben-Sahra I. Manning B.D. metabolic control growth.Curr. Opin. Cell Biol. 45: 72-82Crossref (249) Scholar) catabolic including autophagy (Saxton 2017Saxton R.A. mTOR growth, metabolism, disease.Cell. 168: 960-976Abstract (2403) Scholar), depending on external stimuli. Dysregulated frequently implicated diseases cancer, diabetes, neurodegenerative disorders (Efeyan 2012Efeyan A. Zoncu Amino acids mTORC1: from lysosomes disease.Trends Mol. Med. 2012; 524-533Abstract (304) (AAs) guanosine triphosphatases (Hara 1998Hara K. Yonezawa Weng Q.P. Kozlowski M.T. Belham C. Avruch J. sufficiency p70 S6 kinase eIF-4E BP1 common effector mechanism.J. Chem. 1998; 273: 14484-14494Abstract (1066) Sancak 2010Sancak Y. Bar-Peled L. Markhard A.L. Nada Ragulator-Rag targets surface its activation acids.Cell. 2010; 141: 290-303Abstract (1526) Rags form heterodimer or RagB (RagA/B) RagD (RagC/D) (Sekiguchi 2001Sekiguchi T. Hirose E. Nakashima Ii M. Nishimoto Novel G proteins, C D, interact GTP-binding A B.J. 2001; 276: 7246-7257Abstract (163) are responsible AA-dependent at (Dibble Cantley, 2015Dibble C.C. Cantley L.C. Regulation PI3K signaling.Trends 2015; 25: 545-555Abstract (397) switch nucleotide guanine exchange factor (GEF) (Bar-Peled 2012Bar-Peled Schweitzer L.D. Ragulator GEF rag signal mTORC1.Cell. 150: 1196-1208Abstract (597) Shen 2018Shen SLC38A9 activate noncanonical mechanisms.Proc. Natl. Acad. Sci. USA. 2018; 115: 9545-9550Crossref (56) triphosphatase-activating (GAP) 2013Bar-Peled Chantranupong Cherniack A.D. Chen W.W. Ottina K.A. Grabiner B.C. Spear E.D. Carter S.L. Meyerson Tumor suppressor GAP mTORC1.Science. 2013; 340: 1100-1106Crossref state determines their interaction Raptor, exclusive component mTORC1. Raptor preferentially active composed GTP-RagA/B GDP-RagC/D (Sancak 2008Sancak Peterson T.R. Shaul Y.D. Lindquist Thoreen bind raptor mediate 2008; 320: 1496-1501Crossref (1770) Although some proteins (or complexes) been identified few specific AAs—leucine (Leu), arginine, glutamine, methionine (Jewell 2015Jewell J.L. Kim Y.C. Russell R.C. Yu F.X. Park H.W. Plouffe S.W. Tagliabracci V.S. Guan K.L. Metabolism. Differential leucine glutamine.Science. 347: 194-198Crossref (401) Wang 2015Wang Tsun Z.Y. Wyant G.A. Plovanich M.E. Yuan Jones T.D. Comb W. al.Metabolism. Lysosomal transporter arginine 188-194Crossref (462) 2016Wolfson Saxton Scaria S.M. Cantor J.R. Sestrin2 sensor pathway.Science. 2016; 351: 43-48Crossref (545) 2016Chantranupong Gygi M.P. Harper J.W. S.P. CASTOR pathway.Cell. 165: 153-164Abstract (367) Gu 2017Gu X. Orozco J.M. Condon K.J. Liu G.Y. Krawczyk P.A. SAMTOR S-adenosylmethionine 358: 813-818Crossref (208) Jung 2019Jung Macalino S.J.Y. Cui J.E. H.J. Song D.G. Nam S.H. Choi Lee Transmembrane 4 L six family member 5 senses signaling.Cell 2019; 29: 1306-1319.e7Abstract (25) Scholar)—sensors other remain unknown. Aminoacyl-tRNA synthetases (ARSs) enzymes attach cognate tRNAs. It has shown ARSs function upstream (Arif 2017Arif Terenzi F. Potdar A.A. Jia Sacks China Halawani D. Vasu Li Brown al.EPRS mTORC1-S6K1 influences adiposity mice.Nature. 542: 357-361Crossref (62) Dai 2018Dai W.T. White R.R. J.X. H.Y. Seryl-tRNA synthetase-mediated essential ?-casein mammalian (mTOR) bovine mammary epithelial cells.J. Dairy 101: 10456-10468Abstract (7) Luo 2019Luo Qi H. Huang Zhang Lin Gao GlyRS new mediator acid-induced milk Cell. Physiol. 234: 2973-2983Crossref (18) Importantly, leucyl-tRNA (LARS) was Leu (Bonfils 2012Bonfils G. Jaquenoud Bontron Ostrowicz Ungermann De Virgilio Leucyl-tRNA TORC1 EGO complex.Mol. 46: 105-110Abstract (245) Han 2012Han Jeong S.J. M.C. Kwon N.H. H.K. Ha Ryu intracellular mTORC1-signaling 149: 410-424Abstract (525) He 2018He X.D. Gong J.N. Nie Yao C.F. Guo F.S. Wu X.H. al.Sensing transmitting reversible lysine aminoacylations.Cell 27: 151-166.e6Abstract (53) Scholar); however, role pathway, AA sensors, described. reveal (mt) 2 (TARS2) associates This cannot be achieved (TARS). We further show mRNA translation manner, demonstrating plays key Proximity-dependent biotinylation coupled mass spectrometry (BioID) powerful tool spatial relationships between (Figure 1A). enables large-scale screens involve multiple bait organization individual organelles (Gupta 2015Gupta G.D. Coyaud É. Gonçalves Mojarad B.A. Q. Gheiratmand Comartin Tkach Cheung al.A dynamic landscape human centrosome-cilium interface.Cell. 163: 1484-1499Abstract (272) Youn 2018Youn J.Y. Dunham W.H. Hong Knight J.D.R. Bashkurov G.I. Bagci Rathod B. MacLeod Eng S.W.M. al.High-density proximity mapping reveals subcellular mRNA-associated granules bodies.Mol. 69: 517-532.e11Abstract (256) recently documented profiling 192 marker (Go 2019Go C.D. Rajasekharan Hesketh G.G. Abe K.T. Samavarchi-Tehrani P. Zhu L.Y. map cell.bioRxiv. https://doi.org/10.1101/796391Crossref (0) https://humancellmap.org). Through exploration HumanCellMap database ARSs, noted expected near-exclusive recovery mt-ARSs mt baits. However, also readily recovered interactor sole subunit dataset (LAMTOR1) 1B). Except isoleucyl-tRNA (IARS2), which prey LAMTOR1, albeit comparatively lower level than no were significantly captured LAMTOR1 Consistently, LamTOR1 co-localized IARS2, LARS2 (mt-LARS) 1C). intriguing surprising finding prompted us explore physical association machinery. In contrast reportedly involved lung cancer tumorigenesis AKT/mTOR (Di 2019Di Jin Ma Cong Tian Zhao oncogene IARS2 promotes non-small activating pathway.Front. Oncol. 9: 393Crossref (12) remained unexplored. Our co-immunoprecipitation (coIP) assay revealed interacted only (LamTOR1–LamTOR5) components (mLST8, TEL2, TTI1) (RagA–RagD) S1A). As expected, TARS known binding partner 4EHP (Chapat 2017Chapat Jafarnejad Matta-Camacho Gelbart I.A. Attig Gkogkas C.G. Alain Stern-Ginossar Fabian M.R. al.Cap-binding effects silencing microRNAs.Proc. 114: 5425-5430Crossref (51) 2019Jeong Nguyen L.T. Hwang E.Y. Giong J.S. Yoon J.H. initiation machinery.Nat. Commun. 10: 1357Crossref (23) mainly localizes mitochondria because N-terminal targeting sequence (MTS) (Figures S1B–S1D). detected fraction representing mixture 1D, mito. + lyso.), pure where AA-sensing machinery, LamTOR4, resides. Nonetheless, (10% 15%) present cytoplasm cyto.), implying possibility transient machinery interface lysosomes. LARS functions (Han addition canonical enzymatic charging tRNA. Bearing mind, examined potential Thr-mediated activity, indicated phosphorylation ribosomal (pS6 S240/244) 4E-BP1 (p4E-BP1 T37/46), rapidly decreased depletion within h (75% 60% reduction, respectively) 2A). Whereas less drastic alone same duration (30% reduction), prolonged starvation (12 h) dramatically reduced (85% reduction) low potency likely amount (Novoa 2014Novoa E.M. Camacho Tor Wilkinson Moss Marín-García Azcárate I.G. Bautista Mirando A.C. Francklyn C.S. al.Analogs natural aminoacyl-tRNA inhibitors clear malaria vivo.Proc. 2014; 111: E5508-E5517Crossref (52) affinity compared cellular concentration (Wang 2016Wang Zhou X.L. Ruan Z.R. R.J. Eriani disease-causing point mutation induces both structural functional defects.J. 291: 6507-6520Abstract (22) Abu-Remaileh 2017Abu-Remaileh Laqtom N.N. Abbasi Chan Freinkman metabolomics V-ATPase- mTOR-dependent efflux lysosomes.Science. 807-813Crossref (190) (mTORC2) (pAKT S473) altered S2A). Reduced reversed upon incubation 800 ?M 2C S2B). Moreover, adding (8 ?M) Thr-starved sufficient full 90 min S2C). Notably, stimulating serine valine, two similar Thr, failed rescue recruited mTOR, co-localization LAMP2, enhanced 2D), effectively next whether process. Compared (cells stably expressing short hairpin RNA [shCon]), knockdown [shTARS2]) 12 (64% 85% 2E S2D). fully 15 shCon, shTARS2, even 60 after stimulation 2F S2E), indicating These independent (shRNA) sequences S2F). Furthermore, recruitment abolished shTARS2 2G), presence/absence almost identical shCon S2G). GCN2 deficiency responding uncharged tRNA inhibits eIF2?-ATF4-Sestrin2 (Ye 2015Ye Palm Peng King Lindsten M.O. Koumenis Thompson C.B. sustains suppression deprivation inducing Sestrin2.Genes 2331-2336Crossref (140) neither eIF2? (peIF2? S51), triggered deprivation, nor ATF4 S2H), part regulating pathway. recruiting observed most 3A, S3A, S3B). coIP using truncation mutants S3C, upper panel) showed although TARS21–60 TARS21–124 expressed, probably inherent instability, TARS21–399 panel, lane 10), TARS21–300 (lane 5). result suggested TARS2301–399, intermediate region editing catalytic core domains, RagC. TARS2301–399 contains segment (TARS2382–398) unique higher organisms S3D, panel), deletion did affect panel). Likewise, S3E, RagC1–369 7), RagC1–242 RagC243–369 displayed 9), consistent our endogenous data 3B). corresponding RagD244–370 (only 9 127 different). single substitution S3F, abolish ?2 loss interaction. knockdown, could recover S3G), preferential dependent 3C). Among aminoacylation-defective (C409A R438A) editing-defective (H133A?H137A) (Chen 2018Chen Xue M.Q. synthetase-like aminoacylation activities.Nucleic Acids Res. 3643-3656Crossref (14) C409A mutant lost 3D). C409 coordinates Zn2+ ion, ?-amino group side-chain hydroxyl recognition discrimination site, whereas R438 carboxyl 3?-CCA tRNA, ?-phosphate ATP (Sankaranarayanan 1999Sankaranarayanan Dock-Bregeon Romby Caillet Springer Rees Ehresmann Moras structure synthetase-tRNA(Thr) enlightens repressor zinc ion site.Cell. 1999; 97: 371-381Abstract (247) Torres-Larios 2003Torres-Larios Sankaranarayanan Conformational movements cooperativity acid, synthetase.J. 2003; 331: 201-211Crossref (46) Even though mutations defective, previous bacterial orthologs suggest defective (Nureki 1993Nureki O. Kohno Sakamoto Miyazawa Yokoyama Chemical modification mutagenesis synthetases.J. 1993; 268: 15368-15373Abstract R438A (Minajigi Francklyn, 2008Minajigi RNA-assisted catalysis enzyme: 2?-hydroxyl tRNA(Thr) A76 synthetase.Proc. 105: 17748-17753Crossref (36) Collectively, these results imply must correctly charged Intriguingly, hydrolysis-defective (QL, RagCQ120L) mimicking GTP-RagC 3E). RagC, regardless 3F). GDP-RagA (TL, RagAT21L) (QL) 3G). demonstrate presence Thr. To examine explored parallel (pS6), S4A). similarly elevate 4A). Because GTP-RagA (Kim 2008Kim Goraksha-Hicks Neufeld T.P. nutrient response.Nat. 935-945Crossref (901) replenishing incoming transmitted distinct pathways. Cytoplasmic (Wolfson (Chantranupong detect free AAs, v-ATPase-Ragulator (Rebsamen 2015Rebsamen Pochini Stasyk de Araújo M.E.G. Galluccio Kandasamy R.K. Snijder Fauster Rudashevskaya E.L. Bruckner al.SLC38A9 mTORC1.Nature. 519: 477-481Crossref (384) AAs. determine mechanism levels, pre-treated v-ATPase inhibitor bafilomycin A1 (BafA1) block (Abu-Remaileh Recovery replenishment without BafA1 S4B), detects (GTPases) GEFs, GEFs Rags: (Shen LamTOR4 (shLamTOR4) (shSLC38A9) 4B). 30% shLamTOR4 shSLC38A9 comparable 4C). it lacks GEF, act potent Thr-sensitive presumably modulating yet-unknown GEF. Finally, physiological impact TARS2-mediated

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment.

Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular tRNA(2Thr) with a thre...

متن کامل

A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading

Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine...

متن کامل

The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase.

Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain...

متن کامل

Identification of borrelidin binding site on threonyl-tRNA synthetase.

Borrelidin exhibits a wide spectrum of biological activities and has been considered as a non-competitive inhibitor of threonyl-tRNA synthetase (ThrRS). However, the detailed mechanisms of borrelidin against ThrRS, especially borrelidin binding site on ThrRS, are still unclear, which limits the development of novel borrelidin derivatives and rational design of structure-based ThrRS inhibitors. ...

متن کامل

Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody

An autoantibody known as PL-7 was found in the serum of four patients with myositis and one with a systemic lupus erythematosus-like syndrome. The PL-7 antigen is an 80,000 dalton polypeptide that coprecipitates with transfer RNA. In aminoacylation reactions, PL-7 IgG inhibited the charging of tRNA with threonine but had little or no effect on charging with other amino acids. Experimental antib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecular Cell

سال: 2021

ISSN: ['1097-4164', '1097-2765']

DOI: https://doi.org/10.1016/j.molcel.2020.11.036